4.7 Article

Decomplexation of EDTA-chelated copper and removal of copper ions by non-thermal plasma oxidation/alkaline precipitation

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 362, Issue -, Pages 487-496

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.01.061

Keywords

Non-thermal discharge plasma; EDTA-chelated metals; Cu-EDTA; Decomplexation; Inorganic ions

Funding

  1. National Natural Science Foundation of China [51608448, 21737003]
  2. Young Talent Cultivation Scheme Funding of Northwest AF University [Z109021802]
  3. Science and Technology Innovation Project of Yangling [2018SF-03]

Ask authors/readers for more resources

EDTA-chelated metals, which widely occur during heavy metal contaminated-soil remediation by EDTA washing, are difficult to remove by traditional chemical precipitation because of the strong complexation between EDTA and heavy metal ions. A strategy, i.e., non-thermal plasma (NTP) oxidation/alkaline precipitation, was developed to remove the EDTA-chelated metals; EDTA-chelated copper (EDTA-Cu) was used as the model pollutant and the influences of some concomitant ions on EDTA-Cu decomplexation and Cu release were evaluated. The concomitant anions Cl- and NO3- favored EDTA-Cu decomplexation, whereas CO32- disfavored this process; the concomitant positive ions Ni2+ and Fe3+ both promoted EDTA-Cu decomplexation via replacement or Fenton-like effects. These effects were also characterized by total organic carbon and Cu2+ release analysis. The contributions of O-3, center dot O, O-1(2), center dot OH, and center dot O-2(-) to EDTA-Cu decomplexation were quantitatively analyzed. Ethanamine, acetamide, glycolic acid, acetic acid, formamide, ethylene glycol, and butanedioic acid were monitored using gas chromatography-mass spectrometry, and a possible decomposition pathway of EDTA-Cu was proposed. Furthermore, the chemical compositions of the precipitates were diagnosed by energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermal gravimetric analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available