4.6 Article

Photoenzymatic Hydroxylation of Ethylbenzene Catalyzed by Unspecific Peroxygenase: Origin of Enzyme Inactivation and the Impact of Light Intensity and Temperature

Journal

CHEMCATCHEM
Volume 11, Issue 13, Pages 3093-3100

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201900610

Keywords

peroxygenases; photocatalysis; hydrogen peroxide; light intensity; enzyme inactivation

Funding

  1. German Research Foundation (DFG) [BL 1425/1-1]
  2. European Research Council (ERC) [648026]

Ask authors/readers for more resources

Photoenzymatic cascades can be used for selective oxygenation of C-H-Bonds under mild conditions circumventing the hydrogen peroxide mediated peroxygenase inactivation via in situ H2O2 generation. Here, we report the on demand production of hydrogen peroxide via methanol assisted reduction of molecular oxygen using UV-illuminated titanium dioxide (Aeroxide P25) combined with the enantioselective hydroxylation of ethylbenzene to (R)-1-phenylethanole catalyzed by the Unspecific Peroxygenase from Agrocybe Aegerita. For the application of the system it is important to understand the influence of the reaction parameters to be able to optimize the system. Therefore, we systematically investigated product formation and enzyme inactivation as well as ROS formation (H2O2, (OH)-O-. and O-.(2)-) applying different light intensities and temperatures. As a result, Turnover Numbers up to 220 000, photonic efficiencies up to 13.6 % and production rates up to 0.9 mM h(-1) were achieved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available