4.4 Article

The Effect of Cerebellar tDCS on Sequential Motor Response Selection

Journal

CEREBELLUM
Volume 18, Issue 4, Pages 738-749

Publisher

SPRINGER
DOI: 10.1007/s12311-019-01029-1

Keywords

Cerebellum; Transcranial direct current stimulation; Response selection; Sequence learning; Serial reaction time task

Categories

Funding

  1. Netherlands Organization for Scientific Research (NWO) [452-12-001]

Ask authors/readers for more resources

Transcranial direct current stimulation (tDCS) transiently alters cortical excitability and synaptic plasticity. So far, few studies have investigated the behavioral effects of applying tDCS to the cerebellum. Given the cerebellum's inhibitory effects on cortical motor areas as well as its role in fine motor control and motor coordination, we investigated whether cerebellar tDCS can modulate response selection processes and motor sequence learning. Seventy-two participants received either cerebellar anodal (excitatory), cathodal (inhibitory), or sham (placebo) tDCS while performing a serial reaction time task (SRTT). To compare acute and long-term effects of stimulation on behavioral performance, participants came back for follow-up testing at 24 h after stimulation. Results indicated no group differences in performance prior to tDCS. During stimulation, tDCS did not affect sequence-specific learning, but anodal as compared to cathodal and sham stimulations did modulate response selection processes. Specifically, anodal tDCS increased response latencies independent of whether a trained or transfer sequence was being performed, although this effect became smaller throughout training. At the 24-h follow-up, the group that previously received anodal tDCS again demonstrated increased response latencies, but only when the previously trained sequence and a transfer sequence had to be performed in the same experimental block. This increased behavioral interference tentatively points to a detrimental effect of anodal cerebellar tDCS on sequence consolidation/retention. These results are consistent with the notion that the cerebellum exerts an inhibitory effect on cortical motor areas, which can impair sequential response selection when this inhibition is strengthened by tDCS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available