4.7 Article

Molecular dynamics simulation of SiC removal mechanism in a fixed abrasive polishing process

Journal

CERAMICS INTERNATIONAL
Volume 45, Issue 12, Pages 14614-14624

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2019.04.180

Keywords

Mono-crystalline SiC; Double-abrasives; Polishing; Molecular dynamic simulation; Removal mechanism

Funding

  1. National Natural Science Foundation of China [51675276]
  2. Jiangsu Province Key Laboratory of Precision and Micro-manufacturing Technology

Ask authors/readers for more resources

Precision polishing of mono-crystalline SiC wafers on a fixed abrasive pad is investigated by double-nano-abrasives cutting at micro/nano scale in this report. Prior to this report, a single abrasive approach in molecular dynamics simulation had been employed to illustrate the material removal mechanism in SiC polishing process, which is quite different from the real situation of the fixed abrasive polishing process. Cutting depth and spacing of abrasive particles in a fixed abrasive pads were tested to gain insights on phase transformation, subsurface damage, surface quality, material removal and friction characteristics of polished SiC wafers by molecular dynamics simulation. By following the coordination number and radial distribution function, we clearly see that the number of phase transformation atoms caused by cutting and abrasion increases with the cutting depth of nano-abrasives on the surface of SiC workpiece. Simulation results also suggest that the phase transformation of the SiC crystal phase increases with the lateral spacing of abrasive particles in pads, while does not change much with the increase of the longitudinal spacing. It is also found that the deeper the abrasive cutting depth, the deeper subsurface damage, resulting more materials' removal from SiC workpiece. The lateral and longitudinal abrasive spacings lead to little change the depth of subsurface damage on the wafer in MD simulation for a fixed double abrasive polishing. The surface roughness is better with the larger lateral abrasive spacing, but no clear correlation with the longitudinal abrasive spacing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available