4.7 Article

Hydrophobic modification of regenerated cellulose microparticles with enhanced emulsifying capacity for O/W Pickering emulsion

Journal

CELLULOSE
Volume 26, Issue 10, Pages 6215-6228

Publisher

SPRINGER
DOI: 10.1007/s10570-019-02538-2

Keywords

Cellulose; Pickering emulsion; Surface modification; Surfactant

Funding

  1. Fundamental Research Funds for the Central Universities [2662018PY060]
  2. Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU)

Ask authors/readers for more resources

This work was focused on the fabrication of a stable O/W Pickering emulsion by using cellulose-rich composites that prepared by selectively oxidation with sodium periodate firstly, and followed by grafting dodecylamine to the 2,3-dialdehyde cellulose particles. The structure and properties of the modified cellulose microparticles were characterized, and the performance for the stabilization of O/W Pickering emulsions was investigated. The surface wettability, rheological behavior of the cellulose microparticles before and after being modified had been compared. The results indicated that the hydrophobically modified cellulose microparticles were more effective in emulsifying oil than that of the pristine cellulose microparticles. The contents of oil and cellulose microparticles used had an influence on the size of emulsion droplets, however, the responsiveness of the emulsions towards pH changed slightly, and oil was not leaked from the droplets at decreased pH. This could be explained by the amphiphilicity of the hydrophobically modified cellulose particles. This work provided a facile method for the modification of cellulose microparticles with amphiphilic properties and enhanced emulsifying capacity. The cellulose based particles with biocompatible and environmentally friendly characteristics would be attractive for the applications in biomedicine, pharmaceuticals, cosmetics, etc. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available