4.5 Article

Influence of Support Acidity of Pt/Nb2O5 Catalysts on Selectivity of CO2 Hydrogenation

Journal

CATALYSIS LETTERS
Volume 149, Issue 10, Pages 2823-2835

Publisher

SPRINGER
DOI: 10.1007/s10562-019-02822-7

Keywords

Pt-based catalyst; Niobium oxide; Support acidity effect; CO2 hydrogenation; Methanol synthesis; Dimethyl ether synthesis

Funding

  1. Institute for Basic Science (IBS) [IBS-R004]

Ask authors/readers for more resources

In solid acid catalysis, understanding the impact of support acidity on catalytic performance has remained a controversial issue. The selected catalytic systems often rely on mixing different substances to control the degree of acidity, which in turn, also modifies other parameters in the system, making it challenging to perform a definitive study. To specifically investigate the role of support acidity, we performed a systematic study employing Nb2O5 as the catalyst support, which acidity can be controlled by calcination. The catalytic behavior of the fabricated Pt/Nb2O5 catalysts was evaluated using CO2 hydrogenation to methanol (MeOH) and dimethyl ether (DME). An increase in the acidity of the support resulted in an improvement in the CO2 conversion owing to the strong interaction between the Pt and the catalyst support, but it was detrimental for the production of MeOH because of the unfavorable adsorption of CO2 molecules and the formation of carbon-containing species on the surface of the support with high acidity. DME selectivity was enhanced with an increase in catalyst acidity, confirming the role of solid acids for the production of DME from CO2 reduction. By controlling the calcination temperature of Nb2O5, tunable support acidity was obtained. CO2 conversion increased while the selectivity of methanol and dimethyl ether decreased with increasing support acidity. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available