4.7 Article

A photobiological approach to biophilic design in extreme climates

Journal

BUILDING AND ENVIRONMENT
Volume 154, Issue -, Pages 211-226

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2019.03.027

Keywords

Biophilic design; Northern territories; Light; Image-forming effects; Non-image-forming effects; Adaptive building envelope

Funding

  1. 'Sentinel North Strategy, Canada First Research Excellence Fund' at Universite Laval, Quebec, CA

Ask authors/readers for more resources

This paper proposes the biophilic design approach as a plausible hypothesis for the challenging conditions related to living and working in extreme cold climates. Biophilic design has recently been developed to overcome the adverse effects of the built environment and to improve human well-being by redefining the human-nature relationship. Yet, biophilic design should be adapted to extreme cold climates in order to meet the biological needs of people in northern territories. This issue becomes more important when considering the availability of natural light due to the strong seasonal photoperiod and its effects on human well-being in such regions. The present paper critically reviews biophilic design patterns and identifies their main shortcomings. These shortcomings include the lack of (1) recommendations applicable to extreme cold climates (2) adaptation to the local photoperiods, and (3) a systemic framework integrated into the design process. The paper draws attention to the image-forming and non-image-forming effects of light as a basis of the human-nature design approach. In this regard, photobiological outcomes have been reviewed. Then, the paper discusses the existing lighting standards and guidelines in North America and how they have mainly been developed to fulfil the image-forming demands for light. Further efforts are needed to revise these standards with respect to the non-image-forming effects of light and the biophilic design requirements. Finally, adaptive building envelopes are presented as a hypothetical solution to optimize the biophilic qualities of buildings and address the biological needs of people living and working in extreme cold climates in northern territories.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available