4.5 Article

Assessment of anti-nociceptive effect of allopurinol in a neuropathic pain model

Journal

BRAIN RESEARCH
Volume 1720, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.brainres.2019.04.033

Keywords

Allopurinol; Neuropathic pain; Xanthine oxidase inhibitor; Adenosine A1 receptors; Apoptosis; Glia; Oxidative stress

Categories

Funding

  1. Sabzevar University of Medical Sciences, Sabzevar, Iran

Ask authors/readers for more resources

Background: This study aimed to investigate the antinociceptive effect of allopurinol, a xanthine oxidase inhibitor, in the chronic constriction injury (CCI) to sciatic nerve rat model of neuropathic pain. Methods: Allopurinol administration (30, 60, 90 mg/kg, i.p.) was started at the time of nerve injury, and given for 14 continuous days. Behavioural tests (von Frey filaments, acetone drop, hot plate) were conducted on days 0, 3, 7, 10 and 14. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis was performed on the spinal cord of CCI animals on day 14. The contribution of adenosine (A) receptors was tested using the methylxanthine theophylline, a non-selective A receptor antagonist and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective Al receptor antagonist, administered 30 min before allopurinol on day 10. Results: CCI of the sciatic nerve resulted in a persistent mechanical allodynia, cold allodynia, and heat hyperalgesia, together with increased iNOS, bax/bcl2, iba-1 and TNF-alpha expression in the lumbar spinal cord of animals. The highest-dose group of allopurinol (90 mg/kg) attenuated pain-like behaviors compared with the normal saline treated group, and this was accompanied by normalization of iNOS, bax/bcl2, caspase 3, iba-1 and TNF-alpha gene expression changes. DPCPX and theophylline reversed the thermal anti-hyperalgesic effect of allopurinol. In contrast, the mechanical anti-allodynic effect was only prevented by theophylline. Conclusion: Allopurinol through interacting with different aspects of neuropathic pain, via anti-oxidant effects, protection against neuroinflammation, and activating adenosine receptors, could be useful in the treatment of patients with neuropathic pain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available