4.5 Article

A fully automatic computer-aided diagnosis system for hepatocellular carcinoma using convolutional neural networks

Journal

BIOCYBERNETICS AND BIOMEDICAL ENGINEERING
Volume 40, Issue 1, Pages 238-248

Publisher

ELSEVIER
DOI: 10.1016/j.bbe.2019.05.008

Keywords

Venous phase; Weighted loss function; Fully convolutional networks; Liver segmentation; Hepatocellular carcinoma

Funding

  1. Shanghai University Science and Technology Park

Ask authors/readers for more resources

The cancer of liver, which is the leading cause of cancer death, is commonly diagnosed by comparing the changes of gray level of liver tissue in the different phases of the patient's CT images. To aid the doctor in reducing misdiagnosis or missed diagnosis, a fully automatic computer-aided diagnosis (CAD) system is proposed to diagnose hepatocellular carcinoma (HCC) using convolutional neural network (CNN) classifier. The automatic segmentation and classification are two core technologies of the proposed CAD system, which are both realized based on CNN. The segmentation of liver and tumor is implemented by a fully convolutional networks (FCN) based on a fine tuning VGG-16 model with two additional 'skip structures' using a weighted loss function which helps to solve the problem of inaccurate tumor segmentation caused by the inevitably unbalanced training data. HCC classification is implemented by a 9-layer CNN classifier, whose input is a 4-channel image data constructed by combining the segmentation result of FCN with the original CT image. A total of 165 venous phase CT images including 46 diffuse tumors, 43 nodular tumors, and 76 massive tumors are used to evaluate the performance of the proposed CAD system. The classification accuracy of CNN classifier for diffuse, nodular and massive tumors are 98.4%, 99.7% and 98.7% respectively, which are significantly improved in contrast with the traditional feature-based ANN and SVM classifiers. The proposed CAD system, which is unaffected by the difference of preprocessing method and feature type, is proved satisfactory and feasible by the test set. (c) 2019 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available