4.6 Article

Long noncoding RNA DDX11-AS1 epigenetically represses LATS2 by interacting with EZH2 and DNMT1 in hepatocellular carcinoma

Journal

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
Volume 514, Issue 4, Pages 1051-1057

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2019.05.042

Keywords

DDX11-AS1; LATS2; Epigenetic; Hepatocellular carcinoma

Ask authors/readers for more resources

Long noncoding RNAs (lncRNAs), a group of transcripts without protein coding potential, have been reported to play critical roles in progression of hepatocellular carcinoma (HCC). However, the biological role of DDX11-AS1 in HCC is not clear. In this study, we found that DDX11-AS1 expression was dramatically higher in HCC tissues and cell lines. Higher DDX11-AS1 expression predicted poor overall survival of patients. Functionally, the proliferation, cell cycle progression, migration, and invasion of HCC cells were inhibited by DDX11-AS1 silencing, while promoted by ectopic expression of DDX11-AS1. RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays validated that DDX11-AS1 suppressed LATS2 expression by interacting with EZH2 and DNMT1 in HCC cells. Knockdown of DDX11-AS1 increased the mRNA and protein levels of LATS2. Overexpression of LATS2 abolished the promotive effect of DDX11-AS1 on cell growth and invasion. Besides, DDX11-AS1 promoted tumor formation in vivo. The mRNA levels of LATS2 were markedly decreased in tumor tissues and negatively correlated with DDX11-AS1 expression. Taken together, our data indicated that DDX11-AS1 may be a novel oncogene in hepatocarcinogenesis by repressing LATS2, providing a potential therapeutic target for HCC treatment. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available