4.6 Article

CRISPR-mediated upregulation of DR5 and downregulation of cFLIP synergistically sensitize HeLa cells to TRAIL-mediated apoptosis

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2019.03.018

Keywords

Tumor necrosis factor-related apoptosis-inducing ligand; Anticancer therapy; DR5; cFLIP; Genome editing

Funding

  1. National Research Foundation of Korea [2017M3A9C6061361, 2017R1A5A2015395]
  2. National Research Foundation of Korea (NRF) of the Ministry of Science, ICT and Future Planning, Republic of Korea
  3. National Research Foundation of Korea [2017M3A9C6061361, 2017R1A5A2015395] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has received attention as an anticancer therapy because it mediates apoptosis of several cancer cell types but not normal human cell types. In this study, we implemented genome editing techniques to upregulate DR5 and downregulate cFLIP in HeLa cells to stimulate TRAIL-induced apoptosis. We designed and validated sgRNAs to enrich the endogenous level of DRS by dead Cas9 (dCas9). Similarly, we designed two sgRNAs to disrupt the cFLIP gene by CRISPR/Cas9. We analyzed the effect of TRAIL on tumor cells by co-transfecting HeLa cells with the best combinations of sgRNAs regulating DR5 and cFLIP genes. TRAIL-induced apoptosis in HeLa cells was evaluated by the gamma H2AX foci formation assay to check for double-strand break and propidium iodide and Annexin V staining to quantify apoptotic cells. Viable cells were identified by CCK-8 assay, and cleaved-PARP level was evaluated by Western blot. This is the first study to demonstrate that genome editing techniques can be used as an effective combinatorial treatment strategy to induce apoptosis of cancer cells. In particular, enhancement of DR5 expression and inhibition of cFLIP expression by genome editing had a synergistic effect of inhibiting proliferation and inducing apoptosis in TRAIL-resistant HeLa cells. These results suggest that combinatorial treatment strategies mediated by the CRISPR/Cas9 system may be effective for design of other human TRAIL-resistant cell types. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available