4.6 Article

Regulation of MFGE8 by the intergenic coronary artery disease locus on 15q26.1

Journal

ATHEROSCLEROSIS
Volume 284, Issue -, Pages 11-17

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.atherosclerosis.2019.02.012

Keywords

MFGE8; Coronary artery disease; Single nucleotide polymorphism; Smooth muscle cells; Expression quantitative trait loci

Funding

  1. Canadian Institutes for Health Research Foundation

Ask authors/readers for more resources

Background and aims: A recently identified locus for coronary artery disease (CAD) tagged by rs8042271 is in a region of tight linkage disequilibrium (LD) between 2 genes (MFGE8, ABHD2) previously linked to atherosclerosis. Here we have explored the regulatory framework of this region to identify its functional relationship to CAD. Methods: The CAD Associated Region between MFGE8 and ABHD2 (CARMA) was investigated by bioinformatic approaches and transcriptional reporter assays to prioritize target genes and identify putative causal variants. Findings were integrated with publicly available gene expression datasets. MFGE8 silencing was performed in cell models relevant to CAD. Results: The regulatory potential of CARMA is disseminated sparsely over the entire region. CARMA contains multiple eQTL that regulate MFGE8 in coronary artery and coronary artery smooth muscle cell (CoSMC). SNPs that predict the expression of MFGE8 in artery are concordantly associated with higher risk of CAD (pval=0.0014). Targeting CARMA by CRISPR/Cas9 in a cellular model increased MFGE8 expression. MFGE8 silencing was found to reduce CoSMC and monocyte (THP-1) but not endothelial cell proliferation. Conclusions: These findings support a mechanistic link between a GWAS identified CAD risk locus and atherosclerosis. The intergenic locus CARMA regulates MFGE8 in a haplotype dependent manner. Individuals genetically susceptible to increased MFGE8 expression exhibit greater CAD risk. Suppressing MFGE8 expression reduced SMC and THP-1 proliferation. These data support an atherogenic contribution of CARMA/MFGE8 that may be linked to cell proliferation and/or improved survival of CAD relevant cell types.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available