4.7 Article

Analysis of high-dimensional genomic data employing a novel bio-inspired algorithm

Journal

APPLIED SOFT COMPUTING
Volume 77, Issue -, Pages 520-532

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2019.01.007

Keywords

Microarray; Classification; Fisher score; Salp swarm optimization algorithm (SSA); Kernel extreme learning machine (KELM)

Funding

  1. Fund for Improvement of S&T Infrastructure in Higher Educational Institutions (FIST) Program of Department of Science and Technology, Government of India [SR/FST/ETI-335/2013, ETI/359/2014]

Ask authors/readers for more resources

Over the last decade, there has been a rapid growth in the generation and analysis of the genomics data. Though the existing data analysis methods are capable of handling a particular problem, they cannot guarantee to solve all problems with different nature. Therefore, there always lie a scope of a new algorithm to solve a problem which cannot be efficiently solved by the existing algorithms. In the present work, a novel hybrid approach is proposed based on the improved version of a recently developed bio-inspired optimization technique, namely, salp swarm algorithm (SSA) for microarray classification. Initially, the Fisher score filter is employed to pre-select a subset of relevant genes from the original high-dimensional microarray dataset. Later, a weighted-chaotic SSA (WCSSA) is proposed for the simultaneous optimal gene selection and parameter optimization of the kernel extreme learning machine (KELM) classifier. The proposed scheme is experimented on both binary-class and multi-class microarray datasets. An extensive comparison is performed against original SSA-KELM, particle swarm optimized-KELM (PSO-KELM), and genetic algorithm-KELM (GA-KELM). Lastly, the proposed method is also compared against the results of sixteen existing techniques to emphasize its capacity and competitiveness to successfully reduce the number of original genes by more than 98%. The experimental results show that the genes selected by the proposed method yield higher classification accuracy compared to the alternative techniques. The performance of the proposed scheme demonstrates its effectiveness in terms of number of selected genes (NSG), accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and F-measure. The proposed WCSSA-KELM method is validated using a ten-fold cross-validation technique. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available