4.8 Article

Technology solutions to mitigate electricity cost for electric vehicle DC fast charging

Journal

APPLIED ENERGY
Volume 242, Issue -, Pages 415-423

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2019.03.061

Keywords

Electricity rates; Retail rates; Electric vehicles; DC fast charging; Distributed energy

Funding

  1. United States (U.S.) Department of Energy (DOE) [DE-AC36-08GO28308]
  2. Alliance for Sustainable Energy, LLC
  3. Idaho National Laboratory [AC07-05ID14517]
  4. U.S. DOE Vehicle Technologies Office and Office of Policy

Ask authors/readers for more resources

Widespread adoption of alternative fuel vehicles is being hindered by high vehicle costs and refueling or range limitations. For plug-in electric vehicles, direct-current fast charging (DCFC) is proposed as a solution to support long-distance travel and relieve range anxiety. However, DCFC has also been shown to be potentially more expensive compared to residential or workplace charging. In particular, electricity demand charges can significantly impact electricity cost for fast charging applications. Here we explore technological solutions that can help reduce the electricity cost for electric vehicle fast charging. In particular, we consider thousands of electricity rates available in the United States and real-world vehicle charging load scenarios to assess opportunities to reduce the cost of DCFC by deploying solar photovoltaics (PV) panels and energy storage (battery), and implementing a co-location configuration where a DCFC station is connected to an existing meter within a commercial building. Results show that while the median electricity cost across more than 7000 commercial retail rates remains less than $0.20/kWh for all charging load scenarios considered, cost varies greatly, and some locations do experience significantly higher electricity cost. Co-location is almost always economically viable to mitigate fixed cost and demand charges, but the relative benefit of co-locating diminishes as station size and utilization increase. Energy storage alone can help mitigate demand charges and is more effective at reducing costs for peaky or low-utilization loads. On the other hand, PV systems primarily help mitigate energy charges, and are more effective for loads that are more correlated with solar production, even in areas with lower solar resource. PV and energy storage can deploy synergistically to provide cost reductions for DCFC, leveraging their ability to mitigate demand and energy charges.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available