4.8 Article

Delicate topotactic conversion of coordination polymers to Pd porous nanosheets for high-efficiency electrocatalysis

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 243, Issue -, Pages 86-93

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2018.10.028

Keywords

Coordination polymer; Topochemical reaction; Palladium; Porous nanosheet; Electrocatalyst

Funding

  1. National Natural Science Foundation of China [21503111, 21576139]
  2. Natural Science Foundation of Jiangsu Higher Education Institutions of China [16KJB150020]
  3. Natural Science Foundation of Jiangsu Province [BK20171473]
  4. Natural Sciences and Engineering Research Council of Canada (NSERC)
  5. China Scholarship Council (CSC) [201706860019]
  6. Priority Academic Program Development of Jiangsu Higher Education Institutions

Ask authors/readers for more resources

Two-dimensional noble metal-based nanosheets with high porosity represent a class of promising electrocatalysts due to their highly open structure feature, increased atomic utilization efficiency and thus boosted electrocatalytic performances. Nevertheless, it still remains greatly challenging to fabricate highly porous metal nanosheets through a feasible and general approach to date. Herein we present a novel coordination polymer (CP)-engaged approach to create a class of porous 2D Pd nanosheets for enhancing the electrocatalysis of small molecules through a two-step topotactic conversion reaction. The pre-synthesized Hofmann-type CP square nanoplates are firstly converted into Pd-Ni oxide through a mild calcination and eventually transformed into Pd porous nanosheets after repetitive cyclic voltammetry (CV) treatments in H2SO4 solution. Benefiting from intriguing structural advantages, the formed porous Pd nanosheets exhibit greatly improved catalytic performance toward the electrooxidation of liquid fuels (e.g., CH3OH and HCOOH) and oxygen reduction reaction (ORR) as compared with commercial Pd black catalyst. The present synthetic strategy would provide a new perspective for the rational fabrication of noble metal-based porous nanosheets with extraordinary functionalities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available