4.8 Article

Self-Assembling Peptide-Based Multifunctional Nanofibers for Electrochemical Identification of Breast Cancer Stem-like Cells

Journal

ANALYTICAL CHEMISTRY
Volume 91, Issue 12, Pages 7531-7537

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.8b05359

Keywords

-

Funding

  1. National Natural Science Foundation of China [81671781, 81871449]

Ask authors/readers for more resources

Cancer stem-like cells are closely related with the development and metastasis of tumors. Herein, an electrochemical method is proposed to identify stem-like cells in breast tumor. The core concept of the method is the use of multifunctional nanofibers (MNFs), which are synthesized through facile self-assembly of peptide probes. MNFs can perform three functions, specifically targeting surface biomarker to identify stem-like cells, recruiting silver nanoparticles (AgNPs) to generate electrochemical signals, and providing large amounts of reaction sites to amplify signals. Specially, breast cancer stem cells (BCSCs) are first captured by nucleolin aptamer immobilized on the electrode surface and then selectively recognized by MNFs through the binding with CD44, thereby offering a large number of azide groups for signal labeling. By tracing electrochemical signals from MNF-recruited AgNPs, the method demonstrates to detect target cells as low as 6 cells/mL within a wide linear range from 10 to 5 X 10(5) cells/mL. Moreover, the method can not only recognize BCSCs with high selectivity in complex environment but also monitor drug-induced sternness changes with high sensitivity, providing promising prospective clinic applications in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available