4.7 Article

Synthesis, characterization, and application of chemically interconnected carbon nanotube monolithic sorbents by photopolymerization in polypropylene caps

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 411, Issue 15, Pages 3291-3299

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-019-01795-1

Keywords

Multiwalled carbon nanotubes; Monolithic stirred unit; UV light photografting; Microextraction; Macroscopic 3D structures

Funding

  1. Spanish Ministry of Science and Innovation [CTQ2017-83175R]

Ask authors/readers for more resources

A facile and convenient approach for the preparation of interconnected multiwalled carbon nanotube (MWCNT) monolithic sorbents in recycled plastic caps has been developed. The method, which was based on the photopolymerization of the individual MWCNTs via the formation of a W/O medium internal phase emulsion (40/60 w/w%), provides control over the size of pores, rigidity, and the mechanical stability of the final solid. Pluronic L121 was used as a surfactant containing the water phase inside it and, consequently, the organic and non-polar phase, in which the MWCNTs and the cross-linker were trapped, remained on the outside of the droplets. Optical microscopy and scanning electron microscopy (SEM) were employed to characterize the morphology of both the emulsions and the final solids, respectively. In addition, nitrogen intrusion porosimetry was performed in order to study how the specific surface area of the final monolithic solid changed (from 19.6 to 372.2 m(2) g(-1)) with the variables involved in the polymerization step. To exemplify the great sorbent potential of the synthesized material, a colorimetric assay based on the retention of methylene blue within the interconnected MWCNT monolithic structure was carried out. Finally, following the positive results, the carbon nanotube-monolithic stirred caps were applied for the determination of chlorophenols in a biological matrix such as human urine, obtaining excellent recovery values (91-98%) and good precision (5.4-9.1%) under optimized extraction conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available