4.8 Article

Unraveling the Origin and Mechanism of Nanofilament Formation in Polycrystalline SrTiO3 Resistive Switching Memories

Journal

ADVANCED MATERIALS
Volume 31, Issue 28, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201901322

Keywords

memristors; nanofilaments; resistive switching; transmission electron microscopy (TEM)

Funding

  1. Research Center Program of the Institute for Basic Science [IBS-R009-D1]
  2. Basic Science Research Programs [NRF-2017R1A2B3011629]
  3. Engineering Research Center Program [NRF-2015R1A5A1037627]
  4. Creative Materials Discovery Program through the National Research Foundation of Korea [NRF-2017M3D1A1040688]
  5. German Research Foundation (DFG) at RWTH Aachen University [SFB 917]

Ask authors/readers for more resources

Three central themes in the study of the phenomenon of resistive switching are the nature of the conducting phase, why it forms, and how it forms. In this study, the answers to all three questions are provided by performing switching experiments in situ in a transmission electron microscope on thin films of the model system polycrystalline SrTiO3. On the basis of high-resolution transmission electron microscopy, electron-energy-loss spectroscopy and in situ current-voltage measurements, the conducting phase is identified to be SrTi11O20. This phase is only observed at specific grain boundaries, and a Ruddlesden-Popper phase, Sr3Ti2O7, is typically observed adjacent to the conducting phase. These results allow not only the proposal that filament formation in this system has a thermodynamic origin-it is driven by electrochemical polarization and the local oxygen activity in the film decreasing below a critical value-but also the deduction of a phase diagram for strongly reduced SrTiO3. Furthermore, why many conducting filaments are nucleated at one electrode but only one filament wins the race to the opposite electrode is also explained. The work thus provides detailed insights into the origin and mechanisms of filament generation and rupture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available