4.8 Article

A Thermodynamically Favored Crystal Orientation in Mixed Formamidinium/Methylammonium Perovskite for Efficient Solar Cells

Journal

ADVANCED MATERIALS
Volume 31, Issue 24, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201900390

Keywords

charge transportation; perovskite solar cells; preferable orientation; surface energy; thermodynamics

Funding

  1. National Natural Science Foundation of China [51722201, 51672008, 91733301]
  2. National Key Research and Development Program of China [2017YFA0206701]
  3. Beijing Natural Science Foundation [4182026]
  4. Young Talent Thousand Program

Ask authors/readers for more resources

Crystal orientation has a great impact on the properties of perovskite films and the resultant device performance. Up to now, the exquisite control of crystal orientation (the preferred crystallographic planes and the crystal stacking mode with respect to the particular planes) in mixed-cation perovskites has received limited success, and the underlying mechanism that governs device performance is still not clear. Here, a thermodynamically favored crystal orientation in formamidinium/methylammonium (FA/MA) mixed-cation perovskites is finely tuned by composition engineering. Density functional theory calculations reveal that the FA/MA ratio affects the surface energy of the mixed perovskites, leading to the variation of preferential orientation consequently. The preferable growth along the (001) crystal plane, when lying parallel to the substrates, affects their charge transportation and collection properties. Under the optimized condition, the mixed-cation perovskite (FA(1-x) MA(x) PbI2.87Br0.13 (Cl)) solar cells deliver a champion power conversion efficiency over 21%, with a certified efficiency of 20.50 +/- 0.50%. The present work not only provides a vital step in understanding the intrinsic properties of mixed-cation perovskites but also lays the foundation for further investigation and application in perovskite optoelectronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available