4.8 Article

Conjugated Polyelectrolytes as Multifunctional Passivating and Hole-Transporting Layers for Efficient Perovskite Light-Emitting Diodes

Journal

ADVANCED MATERIALS
Volume 31, Issue 24, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201900067

Keywords

conjugated polyelectrolytes; defects; hole-transporting layers; passivation; perovskite light-emitting diodes

Funding

  1. LG Display under LGD-Korea University Incubation Program
  2. National Research Foundation (NRF) of Korea [NRF-2016M1A2A2940911, 2012M3A6A7055540, 2014R1A5A1009799]
  3. Mid-Career Research Program [2018R1A2B2006198]
  4. National Research Foundation of Korea [2016H1A2A1908137, 22A20153013017, 2012M3A6A7055540] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Metal halide perovskites (MHPs) have attracted significant attention as light-emitting materials owing to their high color purities and tunabilities. A key issue in perovskite light-emitting diodes (PeLEDs) is the fabrication of an optimal charge transport layer (CTL), which has desirable energy levels for efficient charge injection while blocking opposite charges and enabling perovskite layer growth with reduced interfacial defects. Herein, two poly(fluorene-phenylene)-based anionic conjugated polyelectrolytes (CPEs) with different counterions (K+ and tetramethylammonium (TMA(+))) are presented as multifunctional passivating and hole-transporting layers (HTLs). The crystal growth of MHPs grown on different HTLs is investigated through X-ray photoelectron spectroscopy, X-ray diffraction, and density functional theory calculation. The CPE bearing the TMA(+) counterions remarkably improves the growth of perovskites with suppressed interfacial defects, leading to significantly enhanced emission properties and device performance. The luminescent properties are further enhanced via aging and electrical stress application with effective rearrangement of the counterions on the interfacial defects in the perovskites. Finally, efficient formamidinium lead tribromide-based quasi-2D PeLEDs with an external quantum efficiency of 10.2% are fabricated. Using CPEs with varying counterions as a CTL can serve as an effective method for controlling the interfacial defects and improving perovskite-based optoelectronic device properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available