4.8 Article

Constructing CoO/Co3S4 Heterostructures Embedded in N-doped Carbon Frameworks for High-Performance Sodium-Ion Batteries

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 29, Issue 29, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201901925

Keywords

anode; CoO; Co3S4; heterostructure; reaction kinetics; sodium ion batteries

Funding

  1. Natural Science Foundation of Jiangsu Province [BK20160213]
  2. National Natural Science Foundation of China [51702138]
  3. Australian Research Council (ARC) [FT150100109, DP170102406, LE180100141]
  4. Australian Research Council [LE180100141] Funding Source: Australian Research Council

Ask authors/readers for more resources

Heterostructures are attractive for advanced energy storage devices due to their rapid charge transfer kinetics, which is of benefit to the rate performance. The rational and facile construction of heterostructures with satisfactory electrochemical performance, however, is still a great challenge. Herein, ultrafine hetero-CoO/Co3S4 nanoparticles embedded in N-doped carbon frameworks (CoO/Co3S4@N-C) are successfully obtained by employing metal-organic frameworks as precursors. As anodes for sodium ion batteries, the CoO/Co3S4@N-C electrodes exhibit high specific capacity (1029.5 mA h g(-1) at 100 mA g(-1)) and excellent rate capability (428.0 mA h g(-1) at 5 A g(-1)), which may be attributed to their enhanced electric conductivity, facilitated Na+ transport, and intrinsic structural stability. Density functional theoretical calculations further confirm that the constructed heterostructures induce electric fields and promote fast reaction kinetics in Na+ transport. This work provides a feasible approach to construct metal oxide/sulfide heterostructures toward high-performance metal-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available