4.8 Article

Rate-dependency of the mechanical behaviour of semilunar heart valves under biaxial deformation

Journal

ACTA BIOMATERIALIA
Volume 88, Issue -, Pages 120-130

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2019.02.008

Keywords

Aortic valve; Pulmonary valve; Rate-dependency; Biaxial deformation; Mechanical behaviour

Funding

  1. Leverhulme Trust [VP1-2017-001]

Ask authors/readers for more resources

This paper presents an experimental investigation and evidence of rate-dependency in the planar mechanical behaviour of semilunar heart valves. Samples of porcine aortic and pulmonary valves were subjected to biaxial deformations across 1000-fold stretch rate, ranging from (lambda)over dot = 0.001 to 1 s(-1). The experimental campaign encompassed protocols covering (i) tests on samples without preconditioning, (ii) preconditioning immediately followed by tensile tests; and (iii) tensile tests at different rates performed on the same preconditioned specimen. Our results indicate that under all employed loading protocols, heart valve samples exhibit a marked rate-dependency in their deformation behaviour. This rate-dependency is reflected in stress-stretch curves and the calculated ensuing gradients, where samples typically show stiffening with increased rate. These results underpin one conclusive outcome: the in plane mechanical behaviour of semilunar valves is rate-dependent (p <0.05 for Cauchy stress levels >= 50 kPa). This outcome implies that the rate of deformation for characterising the mechanical behaviour of semilunar heart valves may not be chosen arbitrarily low, and models that incorporate rate-effects may be more appropriate for better capturing the mechanical behaviour of heart valves. Statement of Significance This study presents for the first time a comprehensive set of results and evidence of rate-dependency in the mechanical behaviour of semilunar heart valves under biaxial deformation. Our results challenge the widely-applied assumption in the bulk of the existing literature, where an implicit rate-independency is assumed in both experimental and modelling propositions related to the biomechanics of the aortic and pulmonary valves. This study therefore creates a solid platform for future research in heart valve biomechanics with two important implications. First, experimental campaigns have to be carried out at high stretch rates; ideally as close to the physiological rate as possible. Second, new continuum/computational models are required to address the rate-dependent mechanical behaviour of the semilunar valves. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available