4.8 Article

Golgi Apparatus-Targeted Chondroitin-Modified Nanomicelles Suppress Hepatic Stellate Cell Activation for the Management of Liver Fibrosis

Journal

ACS NANO
Volume 13, Issue 4, Pages 3910-3923

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.8b06924

Keywords

chondroitin sulfate; liver fibrosis; Golgi apparatus; activated hepatic stellate cells; targeted delivery

Funding

  1. National Natural Science Foundation of China [81690261, 81673359]

Ask authors/readers for more resources

Liver fibrosis is a serious liver disease associated with high morbidity and mortality. The activation of hepatic stellate cells (HSCs) and the overproduction of extracellular matrix proteins are key features during disease progression. In this work, chondroitin sulfate nanomicelles (CSmicelles) were developed as a delivery system targeting HSCs for the treatment of liver fibrosis. CS-deoxycholic acid conjugates (CS DOCA) were synthesized via amide bond formation. Next, retinoic acid (RA) and doxorubicin (DOX) were encapsulated into CSmicells to afford a DOX+RA-CSmicelles codelivery system. CSmicelles were selectively taken up in activated HSCs and hepatoma (HepG2) cells other than in normal hepatocytes (LO2), the internalization of which was proven to be mediated by CD44 receptors. Interestingly, DOX+RA-CSmicelles preferentially accumulated in the Golgi apparatus, destroyed the Golgi structure, and ultimately downregulated collagen I production. Following tail-vein injection, DOX+RA-CSmicelles were delivered to the cirrhotic liver and showed synergistic antifibrosis effects in the CCl4-induced fibrotic rat model. Further, immunofluorescence staining of dissected liver tissues revealed CD44-specific delivery of CS derivatives to activated HSCs. Together, our results demonstrate the great potential of CS based carrier systems for the targeted treatment of chronic liver diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available