4.8 Article

Enhanced Nanoassembly-Incorporated Antibacterial Composite Materials

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 24, Pages 21334-21342

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b02839

Keywords

antibacterial materials; self-assembly; nanostructures; biomaterials; resin composite restoratives

Funding

  1. ITI Foundation, Switzerland
  2. Israeli Ministry of Science, Technology and Space

Ask authors/readers for more resources

The rapid advancement of peptide- and amino-acid -based nanotechnology offers new approaches for the development of biomedical materials. The utilization of fluorenylmethyloxycarbonyl (Fmoc)-decorated self-assembling building blocks for antibacterial and anti-inflammatory purposes represents promising advancements in this field. Here, we present the antibacterial capabilities of the nanoassemblies formed by Fmoc-pentafluoro-L-phenylalanine-OH, their substantial effect on bacterial morphology, as well as new methods developed for the functional incorporation of these nanoassemblies within resin-based composites. These amalgamated materials inhibit and hinder bacterial growth and viability and are not cytotoxic toward mammalian cell lines. Importantly, due to the low dosage required to confer antibacterial activity, the integration of the nanoassemblies does not affect their mechanical and optical properties. This approach expands on the growing number of accounts on the intrinsic antibacterial capabilities of self-assembling building blocks and serves as a basis for further design and development of enhanced composite materials for biomedical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available