4.8 Article

Mesoporous and Nanocomposite Fibrous Materials Based on Poly(ethylene terephthalate) Fibers with High Craze Density via Environmental Crazing: Preparation, Structure, and Applied Properties

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 20, Pages 18701-18710

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b02570

Keywords

mesoporous polymer fibers; environmental crazing; crazes; nanocomposite materials; silver nanoparticles; antibacterial and antifungal properties

Funding

  1. Russian Foundation for Basic Research [18-29-17016]
  2. Lomonosov Moscow State University Program of Development

Ask authors/readers for more resources

Preparation of mesoporous and nanocomposite fibrous polymer materials based on commercial poly(ethylene terephthalate) (PET) fibers with high density of crazes (HCD fibers) via environmental crazing (EC) is described. Multiple crazes in pristine PET fibers were initiated by the precrazing procedure, and the density of the initiated crazes in the starting HCD fibers is equal to similar to 200 crazes per mm. The scenario of environmental crazing of the HCD PET fibers was studied by online microscopic observations. The mechanism of environmental crazing of the HCD fibers is found to be different from the classical well-known scheme: new crazes are initiated over a broad interval of tensile strains of up to 250%, splitting of thin craze walls takes place, and the collapse of the fibrillar-porous structure of crazes is prevented. The HCD fibers preserve their porosity even upon the complete removal of the physically active liquid environment from the volume of crazes. As a result, the overall porosity of the HCD fibers can reach similar to 60 vol % and pore dimensions are estimated to be below similar to 6 nm. Applied properties of the mesoporous HCD fibers (gas storage potential, sorption, insulating properties) are studied. The bottom-up synthesis of silver nanoparticles in the mesoporous HCD fibers via reduction of silver ions is described, and the resultant silver-containing nanocomposite fibers are characterized by a uniform distribution of silver nanoparticles with an average size of 3 nm. The silver content in the HCD fibers is 6 times higher than that in the pristine PET fibers with the same tensile strain. The silver-loaded fibers show high bactericidal activity against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) and antifungal activity against Candida guilliermondii. The proposed EC approach allows preparation of sustainable mesoporous polymeric fibers and related functional nanocomposite materials with valuable functional properties for diverse applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available