4.8 Article

Fingerprintable Hydrogel from Dual Reversible Cross-Linking Networks with Different Relaxation Times

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 19, Pages 17925-17930

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b06754

Keywords

hydrogel; moldability; pluronic F127; reversible cross-linking fingerprint

Funding

  1. Guangdong Innovative and Entrepreneurial Research Team Program [2013S086]
  2. National Natural Science Foundation of China [51820105004]

Ask authors/readers for more resources

Most of the chemical hydrogels are stretchable, and deformed hydrogels may be recovered when the strain is removed. Such a hydrogel with viscoelastic property cannot be remolded under mild conditions. Here, we demonstrated that a combination of dual reversible cross-linking with different relaxation time scales could be used to develop a remoldable hydrogel responding to mild external stress. We fabricated the hydrogel with the surface-primary amine-rich silica nanodots (ca. 2.0 nm) and benzaldehyde-terminated poly(ethylene oxide)-poly(propylene oxide) (PPO)-poly(ethylene oxide) triblock copolymers (BAF127) at low temperature (<10 degrees C) to form the chemical cross-linking by Schiff-base bonding. Increasing temperature (>15 degrees C) induced the formation of physical cross-linking between the hydrophobic PPO segments. The latter network is weak and shows fast relaxation, whereas the former shows slow relaxation. The unique structural characteristics provides this hydrogel high stretchability and self-healability, as well as moldability. In particular, we demonstrated that this transparent hydrogel can keep the fine three-dimensional patterns of a fingerprint, which may be applied for collecting digital information of fingerprints for identification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available