4.5 Article

Community richness of amphibian skin bacteria correlates with bioclimate at the global scale

Journal

NATURE ECOLOGY & EVOLUTION
Volume 3, Issue 3, Pages 381-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41559-019-0798-1

Keywords

-

Funding

  1. National Science Foundation [DEB-1146284, IOS-1121758, DEB-1310036]
  2. Templeton Foundation
  3. Deutsche Forschungsgemeinschaft (DFG) [VE247/9-1]
  4. CAPES
  5. FAPESP [2013/50741-7]
  6. CNPq
  7. Simons Foundation [429440]
  8. Deutscher Akademischer Austauschdienst (DAAD)
  9. University of Costa Rica [801-B2-029]
  10. Costa Rican Ministry of Science and Technology [(849-PINN-2015)-I]
  11. Portuguese National Funds through FCT [IF/00209/2014/CP1256/CT0011]
  12. National Research Foundation of Korea [2015R1D1A1A01057282]
  13. National Research Foundation of Korea [2015R1D1A1A01057282] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Animal-associated microbiomes are integral to host health, yet key biotic and abiotic factors that shape host-associated microbial communities at the global scale remain poorly understood. We investigated global patterns in amphibian skin bacterial communities, incorporating samples from 2,349 individuals representing 205 amphibian species across a broad biogeographic range. We analysed how biotic and abiotic factors correlate with skin microbial communities using multiple statistical approaches. Global amphibian skin bacterial richness was consistently correlated with temperature-associated factors. We found more diverse skin microbiomes in environments with colder winters and less stable thermal conditions compared with environments with warm winters and less annual temperature variation. We used bioinformatically predicted bacterial growth rates, dormancy genes and antibiotic synthesis genes, as well as inferred bacterial thermal growth optima to propose mechanistic hypotheses that may explain the observed patterns. We conclude that temporal and spatial characteristics of the host's macro-environment mediate microbial diversity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available