4.4 Article

Black soldier fly larvae (Hermetia illucens) strengthen the metabolic function of food waste biodegradation by gut microbiome

Journal

MICROBIAL BIOTECHNOLOGY
Volume 12, Issue 3, Pages 528-543

Publisher

WILEY
DOI: 10.1111/1751-7915.13393

Keywords

-

Funding

  1. National Natural Science Foundation of China [41673081]
  2. ZheJiang Science and Technology Innovation Program of China [2015C03009]
  3. YuHang Initiative for EcoAgriculture Development [2018-0AG-045]

Ask authors/readers for more resources

Vermicomposting using black soldier fly (BSF) larvae (Hermetia illucens) has gradually become a promising biotechnology for waste management, but knowledge about the larvae gut microbiome is sparse. In this study, 16S rRNA sequencing, SourceTracker, and network analysis were leveraged to decipher the influence of larvae gut microbiome on food waste (FW) biodegradation. The microbial community structure of BSF vermicompost (BC) changed greatly after larvae inoculation, with a peak colonization traceable to gut bacteria of 66.0%. The relative abundance of 11 out of 21 metabolic function groups in BC were significantly higher than that in natural composting (NC), such as carbohydrate-active enzymes. In addition, 36.5% of the functional genes in BC were significantly higher than those in NC. The changes of metabolic functions and functional genes were significantly correlated with the microbial succession. Moreover, the bacteria that proliferated in vermicompost, including Corynebacterium, Vagococcus, and Providencia, had strong metabolic abilities. Systematic and complex interactions between the BSF gut and BC bacteria occurred over time through invasion, altered the microbial community structure, and thus evolved into a new intermediate niche favourable for FW biodegradation. The study highlights BSF gut microbiome as an engine for FW bioconversion, which is conducive to bioproducts regeneration from wastes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available