4.7 Article

Stretchable Piezoelectric Sensing Systems for Self-Powered and Wireless Health Monitoring

Journal

ADVANCED MATERIALS TECHNOLOGIES
Volume 4, Issue 5, Pages -

Publisher

WILEY
DOI: 10.1002/admt.201900100

Keywords

kirigami; metamaterials; near-filed communication; piezoelectric sensors

Funding

  1. Engineering and Physical Sciences Research Council through the EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science [EP/L016028/1]
  2. China Scholarship Council
  3. EPSRC [EP/M020460/1, EP/M026388/1, EP/R02961X/1]
  4. Royal Academy of Engineering under the Chair in Emerging Technologies scheme
  5. EPSRC [EP/M020460/1] Funding Source: UKRI
  6. Engineering and Physical Sciences Research Council [EP/S026096/1, EP/M020460/1] Funding Source: researchfish

Ask authors/readers for more resources

Continuous monitoring of human physiological signals is critical to managing personal healthcare by early detection of health disorders. Wearable and implantable devices are attracting growing attention as they show great potential for real-time recording of physiological conditions and body motions. Conventional piezoelectric sensors have the advantage of potentially being self-powered, but have limitations due to their intrinsic lack of stretchability. Herein, a kirigami approach to realize a novel stretchable strain sensor is introduced through a network of cut patterns in a piezoelectric thin film, exploiting the anisotropic and local bending that the patterns induce. The resulting pattern simultaneously enhances the electrical performance of the film and its stretchability while retaining the mechanical integrity of the underlying materials. The power output is enhanced from the mechanoelectric piezoelectric sensing effect by introducing an intersegment, through-plane, electrode pattern. By additionally integrating wireless electronics, this sensing network could work in an entirely battery-free mode. The kirigami stretchable piezoelectric sensor is demonstrated in cardiac monitoring and wearable body tracking applications. The integrated soft, stretchable, and biocompatible sensor demonstrates excellent in vitro and ex vivo performances and provides insights for the potential use in myriad biomedical and wearable health monitoring applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available