4.8 Article

Extraordinary tensile strength and ductility of scalable nanoporous graphene

Journal

SCIENCE ADVANCES
Volume 5, Issue 2, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aat6951

Keywords

-

Funding

  1. Whiting School of Engineering, Johns Hopkins University
  2. JST-CREST Phase Interface Science for Highly Efficient Energy Utilization, JST, Japan

Ask authors/readers for more resources

While the compressive strength-density scaling relationship of ultralight cellular graphene materials has been extensively investigated, high tensile strength and ductility have not been realized in the theoretically strongest carbon materials because of high flaw sensitivity under tension and weak van der Waals interplanar bonding between graphene sheets. In this study, we report that large-scale ultralight nanoporous graphene with three-dimensional bicontinuous nanoarchitecture shows orders of magnitude higher strength and elastic modulus than all reported ultralight carbon materials under both compression and tension. The high-strength nanoporous graphene also exhibits excellent tensile ductility and work hardening, which are comparable to well-designed metamaterials but until now had not been realized in ultralight cellular materials. The excellent mechanical properties of the nanoporous graphene benefit from seamless graphene sheets in the bicontinuous nanoporosity that effectively preserves the intrinsic strength of atomically thick graphene in the three-dimensional cellular nanoarchitecture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available