4.8 Article

Recording interfacial currents on the subnanometer length and femtosecond time scale by terahertz emission

Journal

SCIENCE ADVANCES
Volume 5, Issue 2, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aau0073

Keywords

-

Funding

  1. U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division
  2. Betty and Gordon Moore Foundation EPiQS Initiative [GBMF4545]
  3. CCDM, an EFRC - DOE, Office of Science, BES [DE-SC0012575]
  4. National Science Foundation [ECCS-1508856]

Ask authors/readers for more resources

Electron dynamics at interfaces is a subject of great scientific interest and technological importance. Detailed understanding of such dynamics requires access to the angstrom length scale defining interfaces and the femtosecond time scale characterizing interfacial motion of electrons. In this context, the most precise and general way to remotely measure charge dynamics is through the transient current flow and the associated electromagnetic radiation. Here, we present quantitative measurements of interfacial currents on the subnanometer length and femtosecond time scale by recording the emitted terahertz radiation following ultrafast laser excitation. We apply this method to interlayer charge transfer in heterostructures of two transition metal dichalcogenide monolayers less than 0.7 nm apart. We find that charge relaxation and separation occur in less than 100 fs. This approach allows us to unambiguously determine the direction of current flow, to demonstrate a charge transfer efficiency of order unity, and to characterize saturation effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available