4.8 Review

The role of the third component in ternary organic solar cells

Journal

NATURE REVIEWS MATERIALS
Volume 4, Issue 4, Pages 229-242

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41578-019-0093-4

Keywords

-

Funding

  1. King Abdullah University of Science and Technology (KAUST)
  2. UK Engineering and Physical Sciences Research Council (EPSRC) [EP/G037515/1, EP/M005143/1, 610115, ECFP7]
  3. US National Science Foundation (CBET award) [1510481]
  4. Directorate For Engineering
  5. Div Of Chem, Bioeng, Env, & Transp Sys [1510481] Funding Source: National Science Foundation

Ask authors/readers for more resources

Ternary organic solar cells (TSCs) contain a single three-component photoactive layer with a wide absorption window, which is obtained without the need for multiple stacks. Subsequently, TSCs have attracted great interest in the photovoltaics field. Through careful selection of the three (or more) active components that form the photoactive layer, all photovoltaic parameters can be simultaneously enhanced within a TSC-a strategy that has resulted in record efficiencies for single-junction solar cells. In this Review, we outline key developments in TSCs, with a focus on the central role of the third component in achieving record efficiencies. We analyse the effects of the third component on the nanomorphology of the bulk heterojunction and the photovoltaic parameters of TSCs. Moreover, we discuss the charge-transfer and/or energy-transfer mechanisms and nanomorphology models that govern the operation of TSCs. We consider both polymer and small-molecule donors as well as fullerenes and recently developed non-fullerene acceptors. In addition, we summarize the recent success of TSCs in mitigating the stability issues of binary solar cells. Finally, we provide a perspective on the advantages of ternary blends and suggest design strategies for highly efficient and stable devices for commercial photovoltaics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available