4.6 Article

MHD Thin Film Flow and Thermal Analysis of Blood with CNTs Nanofluid

Journal

COATINGS
Volume 9, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/coatings9030175

Keywords

thin film casson nanofluid; SWCNTs and MWCNTs; stretching cylinder; MHD; HAM

Ask authors/readers for more resources

Our main objective in the present work is to elaborate the characteristics of heat transport and magneto-hydrodynamics (MHD) finite film flow of human blood with Carbon Nanotubes (CNTs) nanofluids over a stretchable upright cylinder. Two kinds of CNTs nanoparticles, namely (i) SWCNTs (single walled carbon nanotubes) and (ii) MWCNTs (multi walled carbon nanotubes), are used with human blood as a base liquid. In addition, a uniform magnetic field (B) has been conducted perpendicularly to the motion of nanoliquid. The transformation of the partial differential structure into a non-linear ordinary differential structure is made by using appropriate dimensionless quantities. The controlling approach of the Homotopy analysis method (HAM) has been executed for the result of the velocity and temperature. The thickness of the coating film has been kept variable. The pressure distribution under the variable thickness of the liquid film has been calculated. The impacts of different variables and rate of spray during coating have been graphically plotted. The coefficient of skin friction and Nusselt number have been presented numerically. In addition, it is noticed that the thermal field of a nanoliquid elevates with rising values of phi and this increase is more in SWCNTs nanofluid than MWCNTs nanofluid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available