4.5 Article

Migration Law of the Roof of a Composited Backfilling Longwall Face in a Steeply Dipping Coal Seam

Journal

MINERALS
Volume 9, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/min9030188

Keywords

steeply dipping coal seam; longwall; composited backfilling; roof; migration law; mechanical model; failure location

Funding

  1. National Natural Science Foundation of China [51604212, 51604213, 51634007]

Ask authors/readers for more resources

The artificial-caved rock composited backfilling approach can effectively restrain the dynamic phenomena in the coal seam and the associated roof and floor during mining operations, and can also improve the stability of the system of support and surrounding rock. In this study, based on the analysis of influencing factors affecting the surrounding rock movement and deformation of the composited backfilling longwall face in a steeply dipping coal seam, the roof mechanical model is developed, and the deflection differential equation is derived, to obtain the roof damage structure and the location of the roof fracture for the area without backfilling. The migration law of the roof under different inclination angles, mining depths, working face lengths, and backfilling ratios are analyzed. Finally, mine pressure is detected in the tested working face. Results show that the roof deflection, bending moment, and rotation drop with the increase of the inclination angle and backfilling ratio, whereas these parameters increase with greater mining depth and working face length. The roof failure location moves toward the upper area of the working face as the inclination angle and working face length increases, while it moves toward the center of the non-backfilling area with greater mining depth and backfilling ratio. Results from the proposed mechanical model agree well with the field test results, demonstrating the validity of the model, which can provide theoretical basis for a safe and efficient mining operation in steeply dipping coal seams.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available