4.3 Article

Jagged1 protein processing in the developing mammalian lens

Journal

BIOLOGY OPEN
Volume 8, Issue 3, Pages -

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/bio.041095

Keywords

Jagged1; Notch signaling; Presenilin; Gamma secretase (gamma-secretase); ADAM protease; Lens development

Categories

Funding

  1. National Science Foundation [1650042]
  2. National Institutes of Health, National Eye Institute [EY18097, P30 EY012576]

Ask authors/readers for more resources

Notch signaling regulates a multitude of cellular processes. During ocular lens development this pathway is required for lens progenitor growth, differentiation and maintenance of the transition zone. After ligand-receptor binding, the receptor proteins are processed, first by ADAM proteases, then by gamma-secretase cleavage. This results in the release of a Notch intracellular domain (N-ICD), which is recruited into a nuclear transcription factor complex that activates Notch target genes. Previous in vitro studies showed that the Delta-like and Jagged ligand proteins can also be cleaved by the gamma-secretase complex, but it remains unknown whether such processing occurs during in vivo vertebrate development. Here we show that mouse and human lens progenitor cells endogenously express multiple Jagged1 protein isoforms, including a Jagged1 intracellular domain. We also found that pharmacologic blockage of gamma-secretase activity in vitro resulted in an accumulation of Jagged1 polypeptide intermediates. Finally, overexpression of an epitope-tagged Jagged1 intracellular domain displayed nuclear localization and induced the upregulation of endogenous JAG1 mRNA expression. These findings support the idea that along with its classical role as a Notch pathway ligand, Jagged1 is regulated post-translationally, to produce multiple active protein isoforms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available