4.6 Article

Occupant Comfort Management Based on Energy Optimization Using an Environment Prediction Model in Smart Homes

Journal

SUSTAINABILITY
Volume 11, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/su11040997

Keywords

prediction; recurrent neural networks (RNN); user comfort; predicted mean vote (PMV); energy optimization; objective function

Funding

  1. Korea government (MSIT) [2018-0-01456]

Ask authors/readers for more resources

Occupant comfort management is an important feature of a smart home, which requires achieving a high occupant comfort level as well as minimum energy consumption. Based on a large amount of data, learning models enable us to predict factors of a mathematical model for deriving the optimal result without expensive experiments. Comfort management supports high-level comfort to the occupant in the individual indoor environment, using the optimal power consumption to run home appliances. In this paper, we propose occupant comfort management based on energy optimization, using an environment prediction model. The proposed energy optimization model provides optimal power consumption based on the proposed objective function, which requires temperature and comfort index data as the input parameters. For the input requirement, temperature prediction model and humidity prediction model are presented based on a recurrent neural network with a pre-collected dataset, including indoor and outdoor temperature and humidity sensing data. Using the predicted temperature and humidity data, the comfort index model derives the predicted mean vote value to be used in the energy optimization model with the predicted temperature data. The experimental results present an 8.43% reduction of the optimized power consumption compared to the actual power consumption using mean absolute percentage error to calculate. Moreover, the emulation of an indoor environment using optimal energy consumption presents as approximately similar to the actual data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available