4.6 Article

Geminal Diol of Dihydrolevoglucosenone as a Switchable Hydrotrope: A Continuum of Green Nanostructured Solvents

Journal

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
Volume 7, Issue 8, Pages 7878-7883

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.9b00470

Keywords

Solvents; Nanostructure; Hydrotrope; Biobased; Switchable; Sustainable

Funding

  1. European Union's Horizon 2020 research and innovation programme [701028]
  2. Marie Curie Actions (MSCA) [701028] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

The addition of water to dihydrolevoglucosenone (Cyrene) creates a solvent mixture with highly unusual properties and the ability to specifically and efficiently solubilize a wide range of organic compounds, notably, aspirin, ibuprofen, salicylic acid, ferulic acid, caffeine, and mandelic acid. The observed solubility enhancement (up to 100-fold) can be explained only by the existence of microenvironments mainly centered on Cyrene's geminal diol. Surprisingly, the latter acts as a reversible hydrotrope and regulates the polarity of the created complex mixture. The possibility to tune the polarity of the solvent mixture through the addition of water, and the subsequent generation of variable amounts of Cyrene's geminal diol, creates a continuum of green solvents with controllable solubilization properties. The effective presence of microheterogenieties in the Cyrene/water mixture was adequately proven by (1) Fourier transform infrared/density functional theory showing Cyrene dimerization, (2) electrospray mass-spectrometry demonstrating the existence of dimers of Cyrene's geminal diol, and (3) the variable presence of single or multiple tetramethylsilane peaks in the H-1 NMR spectra of a range of Cyrene/water mixtures. The Cyrene-water solvent mixture is importantly not mutagenic, barely ecotoxic, bioderived, and endowed with tunable hydrophilic/hydrophobic properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available