4.7 Article

A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks

Journal

REMOTE SENSING
Volume 11, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/rs11030274

Keywords

convolutional neural network; cross-validation; deep learning; land use classification; land cover classification; remote sensing; statistical analysis

Funding

  1. Spanish Ministry of Economy and Competitiveness [TIN2014-55894-C2-1-R, TIN2017-88209-C2-2-R]

Ask authors/readers for more resources

Analyzing land use and land cover (LULC) using remote sensing (RS) imagery is essential for many environmental and social applications. The increase in availability of RS data has led to the development of new techniques for digital pattern classification. Very recently, deep learning (DL) models have emerged as a powerful solution to approach many machine learning (ML) problems. In particular, convolutional neural networks (CNNs) are currently the state of the art for many image classification tasks. While there exist several promising proposals on the application of CNNs to LULC classification, the validation framework proposed for the comparison of different methods could be improved with the use of a standard validation procedure for ML based on cross-validation and its subsequent statistical analysis. In this paper, we propose a general CNN, with a fixed architecture and parametrization, to achieve high accuracy on LULC classification over RS data from different sources such as radar and hyperspectral. We also present a methodology to perform a rigorous experimental comparison between our proposed DL method and other ML algorithms such as support vector machines, random forests, and k-nearest-neighbors. The analysis carried out demonstrates that the CNN outperforms the rest of techniques, achieving a high level of performance for all the datasets studied, regardless of their different characteristics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available