4.7 Article

Polyarylene Ether Nitrile and Barium Titanate Nanocomposite Plasticized by Carboxylated Zinc Phthalocyanine Buffer

Journal

POLYMERS
Volume 11, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/polym11030418

Keywords

barium titanate; polyarylene ether nitrile; zinc phthalocyanine; dielectrics; rheology

Funding

  1. National Natural Science Foundation of China [51603029, 51773028]
  2. China Postdoctoral Science Foundation [2017M623001]
  3. National Postdoctoral Program for Innovative Talents [BX201700044]

Ask authors/readers for more resources

Barium titanate (BT) and polyarylene ether nitrile (PEN) nanocomposites with enhanced dielectric properties were obtained by using carboxylatedzinc phthalocyanine (ZnPc-COOH) buffer as the plasticizer. Carboxylated zinc phthalocyanine, prepared through hydrolyzing ZnPc in NaOH solution, reacted with the hydroxyl groups on the peripheral of hydrogen peroxide treated BT (BT-OH) yielding core-shell structured BT@ZnPc. Thermogravimetric analysis (TGA), transmission electron microscopy (TEM), TEM energy dispersive spectrometer mapping, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) demonstrated successful preparation of BT@ZnPc. The fabricated BT@ZnPc was incorporated into the PEN matrix through the solution casting method. Rheological measurements demonstrated that the ZnPc-COOH buffer can improve the compatibility between BT and PEN effectively. With the existence of the ZnPc-COOH buffer, the prepared BT@ZnPc/PEN nanocomposites exhibit a high dielectric constant of 5.94 and low dielectric loss (0.016 at 1000 Hz). BT@ZnPc/PEN dielectric composite films can be easily prepared, presenting great application prospects in the field of organic film capacitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available