4.2 Article

Design and Workspace Analysis of a Parallel Ankle Rehabilitation Robot (PARR)

Journal

JOURNAL OF HEALTHCARE ENGINEERING
Volume 2019, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2019/4164790

Keywords

-

Funding

  1. National Natural Science Foundation of China [51705007, 51675008]
  2. Natural Science Foundation of Beijing Municipality [3171001, 17L20019]
  3. Natural Science Foundation of Beijing Education Committee [KM201810005015]
  4. China Postdoctoral Science Foundation [2018T110017]

Ask authors/readers for more resources

The ankle rehabilitation robot is essential equipment for patients with foot drop and talipes valgus to make up deficiencies of the manual rehabilitation training and reduce the workload of rehabilitation physicians. A parallel ankle rehabilitation robot (PARR) was developed which had three rotational degrees of freedom around a virtual stationary center for the ankle joint. The center of the ankle should be coincided with the virtual stationary center during the rehabilitation process. Meanwhile, a complete information acquisition system was constructed to improve the human-machine interactivity among the robot, patients, and physicians. The physiological motion space (PMS) of ankle joint in the autonomous and boundary elliptical movements was obtained with the help of the RRR branch and absolute encoders. The natural extreme postures of the ankle complex are the superposition of the three typical movements at the boundary motions. Based on the kinematic model of PARR, the theoretical workspace (TWS) of the parallel mechanism was acquired using the limit boundary searching method and could encircle PMS completely. However, the effective workspace (EWS) was smaller than TWS due to the physical structure, volume, and interference of mechanical elements. In addition, EWS has more clinical significance for the ankle rehabilitation. The PARR prototype satisfies all single-axis rehabilitations of the ankle and can cover most compound motions of the ankle. The goodness of fit of PMS can reach 93.5%. Hence, the developed PARR can be applied to the ankle rehabilitation widely.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available