4.3 Article

Newly Designed Hydrolysis Acidification Flat-Sheet Ceramic Membrane Bioreactor for Treating High-Strength Dyeing Wastewater

Publisher

MDPI
DOI: 10.3390/ijerph16050777

Keywords

hydrolysis acidification; MBR; membrane fouling; decolorization; microbial diversity; seed sludge

Funding

  1. National Natural Science Foundation of China [51638006, 51668013]
  2. Guangxi Science and Technology Planning Project [GuiKe-AD18126018]
  3. Special Funding for Guangxi BaGui Scholar Construction Projects

Ask authors/readers for more resources

Cost-effective treatment of dyeing wastewater remains a challenge. In this study, a newly designed hydrolysis acidification flat-sheet ceramic membrane bioreactor (HA-CMBR) was used in treating high-strength dyeing wastewater. The start-up phase of the HA-CMBR was accomplished in 29 days by using cultivated seed sludge. Chemical oxygen demand (COD) removal rate reached about 62% with influent COD of 7800 mg/L and an organic loading rate of 7.80 kg-COD/(m(3)d). Chromaticity removal exceeded 99%. The results show that the HA-CMBR has good removal performance in treating dyeing wastewater. The HA-CMBR could run with low energy consumption at trans-membrane pressure (TMP) <10 kPa due to the good water permeability of the flat-sheet ceramic membrane. New strains with 92%-96% similarity to Alkalibaculum bacchi, Pseudomonas sp., Desulfovibrio sp., and Halothiobacillaceae were identified in the HA-CMBR. Microbial population analysis indicated that Desulfovibrio sp., Deltaproteobacteria, Halothiobacillaceae, Alkalibaculum sp., Pseudomonas sp., Desulfomicrobium sp., and Chlorobaculum sp. dominated in the HA-CMBR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available