4.7 Article

Effect of Bi-functional Hierarchical Flower-like CoS Nanostructure on its Interfacial Charge Transport Kinetics, Magnetic and Electrochemical Behaviors for Supercapacitor and DSSC Applications

Journal

SCIENTIFIC REPORTS
Volume 9, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-37463-0

Keywords

-

Funding

  1. DST-SERB, India [PDF/2016/003878]
  2. UGC-BSR Mid-Career Award Grant, UGC-India [F.19-200/2017]
  3. RUSA, India
  4. DST-PURSE

Ask authors/readers for more resources

Metal sulfides are of great interest for future electrode materials in supercapacitor and solar cell applications owing to their superior electrochemical activity and excellent electrical conductivity. With this scope, a binary transition metal sulfide (CoS) is prepared via one-step hydrothermal synthesis. Hexagonal phase of CoS with space group of P6(3)/mmc(194) is confirmed by XRD analysis. Additional cubic Co3S4 phase in the prepared sample originates the mixed valence state of Co (Co2+ and Co3+) is affirmed from XPS analysis. Morphological features are visualized using HRSEM images that shows nanoflower shaped star-anise structure. Employing the prepared CoS as active electrode material, interfacial charge transport kinetics is examined by EIS-Nyquist plot. The supercapacitive performances are tested in two and three-electrode system which exhibited respective specific capacitances of 57 F/g and 348 F/g for 1 A/g. Further, the fabricated asymmetric CoS//AC supercapacitor device delivers an appreciable energy density of 15.58 Wh/kg and power density of 700.12 W/kg with excellent cyclic stability of 97.9% and Coulombic efficiency of 95% over 2000 charge-discharge cycles. In addition, dye-sensitized solar cells are fabricated with CoS counter electrode and the obtained power conversion efficiency of 5.7% is comparable with standard platinum based counter electrode (6.45%). Curie-Weiss plot confirms the transition of paramagnetic nature into ferrimagnetic behavior at 85 K and Pauli-paramagnetic nature at 20 K respectively. Temperature dependent resistivity plot affirms the metallic nature of CoS sample till 20 K and transition to semiconducting nature occurs at <20 K owing to Peierl's transition effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available