4.6 Review

Inorganic and Hybrid Perovskite Based Laser Devices: A Review

Journal

MATERIALS
Volume 12, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/ma12060859

Keywords

inorganic perovskites; hybrid perovskites; stimulated emission; laser devices

Funding

  1. Erasmus Plus Capacity Building Project entitled Innovative Photonic Education in Nanotechnology-iPEN of the European Union [586165-EPP-1-2017-1-EL-EPPKA2-CBHE-JP]

Ask authors/readers for more resources

Inorganic and organic-inorganic (hybrid) perovskite semiconductor materials have attracted worldwide scientific attention and research effort as the new wonder semiconductor material in optoelectronics. Their excellent physical and electronic properties have been exploited to boost the solar cells efficiency beyond 23% and captivate their potential as competitors to the dominant silicon solar cells technology. However, the fundamental principles in Physics, dictate that an excellent direct band gap material for photovoltaic applications must be also an excellent light emitter candidate. This has been realized for the case of perovskite-based light emitting diodes (LEDs) but much less for the case of the respective laser devices. Here, the strides, exclusively in lasing, made since 2014 are presented for the first time. The solution processability, low temperature crystallization, formation of nearly defect free, nanostructures, the long range ambipolar transport, the direct energy band gap, the high spectral emission tunability over the entire visible spectrum and the almost 100% external luminescence efficiency show perovskite semiconductors' potential to transform the nanophotonics sector. The operational principles, the various adopted material and laser configurations along the future challenges are reviewed and presented in this paper.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available