4.6 Article

Impact of the emission wavelengths on in vivo multiphoton imaging of mouse brains

Journal

BIOMEDICAL OPTICS EXPRESS
Volume 10, Issue 4, Pages 1905-1918

Publisher

OPTICAL SOC AMER
DOI: 10.1364/BOE.10.001905

Keywords

-

Funding

  1. NSF [DBI-1707312]
  2. Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center (DoI/IBC) [D16PC00003]

Ask authors/readers for more resources

Tissue scattering and absorption impact the excitation and emission light in different ways for multiphoton imaging. The collected fluorescence includes both ballistic photons and scattered photons whereas multiphoton excited signal within the focal volume is mostly generated by ballistic photons. The impact of excitation wavelengths on multiphoton imaging has been extensively investigated before; however, experimental data is lacking to evaluate the impact of emission wavelengths on fluorescence attenuation in deep imaging. Here we perform three-photon imaging of mouse brain vasculature in vivo using green, red, and near-infrared emission fluorophores, and compare quantitatively the attenuation of the fluorescence signal in the mouse brain at the emission wavelengths of 520 nm, 615 nm and 711 nm. Our results show that the emission wavelengths do not significantly influence the fluorescence collection efficiency. For the green, red and near-infrared fluorophores investigated, the difference in fluorescence collection efficiency is less than a factor of 2 at imaging depths between 0.6 and 1 mm. The advantage of long wavelength dyes for multiphoton deep imaging is almost entirely due to the long excitation wavelengths. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available