4.8 Article

Electrically pumped photonic integrated soliton microcomb

Journal

NATURE COMMUNICATIONS
Volume 10, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-08498-2

Keywords

-

Funding

  1. Defense Advanced Research Projects Agency (DARPA) [HR0011-15-C-0055]
  2. Defense Sciences Office (DSO)
  3. Swiss National Science Foundation [163864]
  4. Russian Science Foundation (RSF) [17-12-01413]
  5. EU H2020 FET OPTIMISM [801352]
  6. European Unions Horizon 2020 research and innovation program under Marie Sklodowska-Curie IF [709249]
  7. ESA [4000118777/16/NL/GM]
  8. European Space Technology Center [4000116145/16/NL/MH/GM]
  9. Marie Curie Actions (MSCA) [709249] Funding Source: Marie Curie Actions (MSCA)
  10. Russian Science Foundation [17-12-01413] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

Microcombs provide a path to broad-bandwidth integrated frequency combs with low power consumption, which are compatible with wafer-scale fabrication. Yet, electrically-driven, photonic chip-based microcombs are inhibited by the required high threshold power and the frequency agility of the laser for soliton initiation. Here we demonstrate an electrically-driven soliton microcomb by coupling a III-V-material-based (indium phosphide) multiple-longitudinal-mode laser diode chip to a high-Q silicon nitride microresonator fabricated using the photonic Damascene process. The laser diode is self-injection locked to the microresonator, which is accompanied by the narrowing of the laser linewidth, and the simultaneous formation of dissipative Kerr solitons. By tuning the laser diode current, we observe transitions from modulation instability, breather solitons, to single-soliton states. The system operating at an electronically-detectable sub-100-GHz mode spacing requires less than 1 Watt of electrical power, can fit in a volume of ca. 1 cm(3), and does not require on-chip filters and heaters, thus simplifying the integrated microcomb.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available