4.4 Article

Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling

Journal

Publisher

SPRINGER
DOI: 10.1007/s11027-019-9847-y

Keywords

Negative emission technology; CO2 direct air capture; Energy transition; 100% renewable energy; Maghreb

Funding

  1. Lappeenranta University of Technology (LUT)
  2. Lappeenranta University of Technology

Ask authors/readers for more resources

Pathways for achieving the 1.5-2 degrees C global temperature moderation target imply a massive scaling of carbon dioxide (CO2) removal technologies, in particular in the 2040s and onwards. CO2 direct air capture (DAC) is among the most promising negative emission technologies (NETs). The energy demands for low-temperature solid-sorbent DAC are mainly heat at around 100 degrees C and electricity, which lead to sustainably operated DAC systems based on low-cost renewable electricity and heat pumps for the heat supply. This analysis is carried out for the case of the Maghreb region, which enjoys abundantly available low-cost renewable energy resources. The energy transition results for the Maghreb region lead to a solar photovoltaic (PV)-dominated energy supply with some wind energy contribution. DAC systems will need the same energy supply structure. The research investigates the levelised cost of CO2 DAC (LCOD) in high spatial resolution and is based on full hourly modelling for the Maghreb region. The key results are LCOD of about 55 euro/t(CO2) in 2050 with a further cost reduction potential of up to 50%. The area demand is considered and concluded to be negligible. Major conclusions for CO2 removal as a new energy sector are drawn. Key options for a global climate change mitigation strategy are first an energy transition towards renewable energy and second NETs for achieving the targets of the Paris Agreement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available