4.7 Article

Simulation Model for Collaborative Decision Making on Sediment Source Reduction in an Intensively Managed Watershed

Journal

WATER RESOURCES RESEARCH
Volume 55, Issue 2, Pages 1544-1564

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018WR024324

Keywords

watershed simulation model; reduced-complexity modeling; nonpoint source sediment management; collaborative modeling

Funding

  1. Minnesota Agricultural Water Resources Center
  2. U.S. Environmental Protection agency via the Minnesota Pollution Control Agency
  3. Minnesota Clean Water Land and Legacy Amendment funds through the Minnesota Pollution Control Agency
  4. Minnesota Department of Agriculture
  5. US Department of Agriculture NRCS [69-3A75-14-269]
  6. Utah Agricultural Experiment Station

Ask authors/readers for more resources

We developed a watershed sediment source and delivery model for use in evaluating conservation trade-offs in southern Minnesota, where sediment loading has been identified as a priority and there is substantial public investment in cleaner water. The model was developed in a stakeholder process and links user-specified management options to reductions in sediment loading at the outlet of a 2,880-km(2) intensively farmed watershed. The simulation model was formulated to allocate total sediment load among sources, which provides robustness to the model by constraining the relative magnitude of sediment loads and their reduction. A novel topographic filtering approach was used to develop spatially distributed maps of sediment delivery ratio, addressing the problem of storage between source and outlet. The dominant sediment source in the watershed is erosion of steep streamside bluffs in response to increases in river discharge. Rates of bluff erosion as a function of river discharge were determined from sediment loads measured at pairs of gages on individual streams. Using this analysis, upland water storage to reduce peak river flow was included as an option in the model. The model development process was designed to promote transparency and develop stakeholder trust through multiple meetings in which an underlying sediment budget was developed and refined. The model runs rapidly, providing real-time response to user choice and supporting Monte Carlo simulation of the influence of uncertainty on the calculated sediment load. The stakeholder group used the model to identify a priority strategy for investing public funds to improve water quality. Plain Language Summary Water pollution from excess sediment poses serious threats to the livelihood of aquatic ecosystem as well as recreation. We present a watershed model, developed through a collaboration with local stakeholders, that evaluates different conservation scenarios to reduce sediment source and delivery. The model is used to bring consensus among stakeholders in identifying a priority strategy for investing public funds to improve water quality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available