4.7 Article

Modeling Land Subsidence Using InSAR and Airborne Electromagnetic Data

Journal

WATER RESOURCES RESEARCH
Volume 55, Issue 4, Pages 2801-2819

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018WR024185

Keywords

-

Funding

  1. Gordon and Betty Moore Foundation
  2. National Science Foundation Fellowship [DGE-114747]

Ask authors/readers for more resources

Land subsidence as a result of groundwater overpumping in the San Joaquin Valley, California, is associated with the loss of groundwater storage and aquifer contamination. Although the physical processes governing land subsidence are well understood, building predictive models of subsidence is challenging because so much subsurface information is required to do so accurately. For the first time, we integrate airborne electromagnetic data, representing the subsurface, with subsidence data, mapped by interferometric synthetic aperture radar (InSAR), to model deformation. By combining both data sets, we are able to solve for hydrologic and geophysical properties of the subsurface to effectively model the complex spatiotemporal process of deformation. The resulting model reveals that roughly 3 m of subsidence has occurred at one location of our study area from 1990 to 2018. This model also allows us to predict subsidence more accurately under future hydrologic scenarios, which is needed to develop plans for sustainable groundwater use.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available