4.5 Article

Lipid core nanoparticles as vehicle for docetaxel reduces atherosclerotic lesion, inflammation, cell death and proliferation in an atherosclerosis rabbit model

Journal

VASCULAR PHARMACOLOGY
Volume 115, Issue -, Pages 46-54

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.vph.2019.02.003

Keywords

Lipid core nanoparticles; Docetaxel; Atherosclerosis; Inflammation; Drug delivery

Funding

  1. State of Sao Paulo Research Support Foundation (FAPESP, Sao Paulo, Brazil) [2014/03742-0]

Ask authors/readers for more resources

Chemotherapeutic agents used in cancer treatment associated to nanoparticles (LDE) that mimic the composition of low-density lipoprotein and buffer their toxicity can have strong anti-atherosclerosis action, as we showed in cholesterol-fed rabbits. Here, a novel preparation of docetaxel (DTX) carried in LDE was evaluated. Eighteen rabbits were fed 1% cholesterol during 8 weeks. After the first 4 weeks, 9 animals were treated for 4 weeks with intravenous LDE-DTX (1 mg/kg/week) and 9 with LDE only (controls) once a week for 4 weeks. Animals were then euthanized and the aortas were analyzed for morphometry, immunohistochemistry and Western blot. LDE-DTX treated group showed 80% reduction of atheroma area compared to controls. LDE-DTX treatment reduced in 60% the protein expression of macrophage marker CD68 and of MCP-1 in 80%. LDE-DTX pronouncedly lowered expression of pro-inflammatory markers NF-kappa B, TNF-alpha, IL-1 beta, IL-6 and von Willebrand factor and elicited 40% reduction in cell proliferation marker PCNA. The presence of smooth muscle cells in the intima was 85% smaller than in controls. Pro-apoptotic caspase 3, caspase 9, Bax, and anti-apoptotic Bcl-2 all were reduced by LDE-DTX. Protein expression of MMP-2 and MMP-9, TGF-beta and collagen 1 and 3 were also markedly lowered by the LDE-DTX treatment. Animals showed no hematological, hepatic or renal toxicity consequent to LDE-DTX treatment. In conclusion, LDE-DTX showed a wide array of strong effects on pro-inflammatory and proliferation-promoting factors that drive the lesion development. These findings and the lack of observable toxicity indicate that LDE-DTX can be a candidate for future clinical trials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available