4.7 Article

Ultrasound-induced synthesis of an imidazolium based poly(ionic liquid) in an aqueous media: A structural, thermal and morphological study

Journal

ULTRASONICS SONOCHEMISTRY
Volume 55, Issue -, Pages 149-156

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultsonch.2019.02.027

Keywords

Poly (ionic liquid); Imidazolium; Dispersion polymerization; Self-assembly; Ultrasound

Ask authors/readers for more resources

Here we describe an efficient and rapid way for the polymerization of the 3-Octyl-1-vinylimidazolium Bromide using ultrasonic irradiation. This way promoted high dispersion polymerization using a water-soluble free radical initiator namely 4,4'-Azobis (4-cyanopentanoic acid) and free of dispersant. The ionic liquid monomer was prepared via quaternization of 1-vinylimidazole with octyl bromide also promoted by ultrasound. The polymerization rates were compared with a conventional heating method and appeared to be higher in the ease of the ultrasound method within a short reaction time. The structural/morphological features and thermal properties of the obtained products were determined by different analytical techniques such as (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electronic microscopy (SEM, TEM), Fourier transform infrared spectroscopy (FTIR) and NMR Spectroscopy (H-1 and C-13 NMR). The morphology and the thermal behavior of the obtained poly(ionic liquid) were investigated and discussed. The results indicated that self-assembled nanospherical particles of 30-80 nm in diameter were obtained through the ultrasound method, while on the other hand; worm-like/cylindrical agglomerated nanoparticles with irregular sizes 50-300 nm in diameter were obtained via the classical heating method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available